Mean and variance of the forward field propagated through three-dimensional random internal waves in a continental-shelf waveguide
نویسندگان
چکیده
The mean and variance of the acoustic field forward propagated through a stratified ocean waveguide containing three-dimensional 3-D random internal waves is modeled using an analytic normal mode formulation. The formulation accounts for the accumulated effects of multiple forward scattering. These lead to redistribution of both coherent and incoherent modal energies, including attenuation and dispersion. The inhomogeneous medium’s scatter function density is modeled using the Rayleigh-Born approximation to Green’s theorem to account for random fluctuations in both density and compressibility caused by internal waves. The generalized waveguide extinction theorem is applied to determine attenuation due to scattering from internal wave inhomogeneities. Simulations for typical continental-shelf environments show that when internal wave height exceeds the acoustic wavelength, the acoustic field becomes so randomized that the expected total intensity is dominated by the field variance beyond moderate ranges. This leads to an effectively saturated field that decays monotonically and no longer exhibits the periodic range-dependent modal interference structure present in nonrandom waveguides. Three-dimensional scattering effects can become important when the Fresnel width approaches and exceeds the cross-range coherence length of the internal wave field. Density fluctuations caused by internal waves are found to noticably affect acoustic transmission in certain Arctic environments. © 2005 Acoustical Society of America. DOI: 10.1121/1.1993107
منابع مشابه
Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.
An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations aft...
متن کاملTemporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves Citation
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward...
متن کاملMean and covariance of the forward field propagated through a stratified ocean waveguide with three-dimensional random inhomogeneities
Compact analytic expressions are derived for the mean, mutual intensity, and spatial covariance of the acoustic field forward propagated though a stratified ocean waveguide containing three-dimensional random surface and volume inhomogeneities. The inhomogeneities need not obey a stationary random process in space, can be of arbitrary composition and size relative to the wavelength, or can have...
متن کاملTemporal coherence after multiple forward scattering through random three-dimensional inhomogeneities in an ocean waveguide.
An analytical expression is derived for the temporal coherence of an acoustic field after multiple forward scattering through random three-dimensional (3D) inhomogeneities in an ocean waveguide. This expression makes it possible to predict the coherence time scale of field fluctuations in ocean-acoustic measurements from knowledge of the oceanography. It is used to explain the time scale of aco...
متن کاملEnergy Transport by Nonlinear Internal Waves
Wintertime stratification on Oregon’s continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide on which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture disturbances that exhibit properties of internal solitary waves, bores and gravity currents. Wave-like pulses are highly turbulent (instantaneous bed st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005